Eclipse插件 vim 希腊字母 makefile overflow ios string foreach lua dns air grunt jquery选择器找子元素 java通用版qq浏览器下载 hbase端口 webapp打包 git下载项目 matlab不等于 mysql建表 python的open函数 python导入文件 java程序实例 java重写和重载的区别 java基础学习 java字符串查找 java学习课程 java学习流程 php案例 flash实例 谷歌地球打不开 volist 影视后期软件 alphacam java电子书 朋友圈访客记录教程 英雄联盟设置 vscode全局搜索 万能低格工具还原u盘 服务器之家 0x000008e
当前位置: 首页 > 学习教程  > 编程语言

面试官问你:为什么Redis 单线程却能支撑高并发呢

2020/8/31 14:47:33 文章标签:

最近在看 UNIX 网络编程并研究了一下 Redis 的实现,感觉 Redis 的源代码十分适合阅读和分析,其中 I/O 多路复用(mutiplexing)部分的实现非常干净和优雅,在这里想对这部分的内容进行简单的整理。

几种 I/O 模型

为什么 Redis 中要使用 I/O 多路复用这种技术呢?

首先,Redis 是跑在单线程中的,所有的操作都是按照顺序线性执行的,但是由于读写操作等待用户输入或输出都是阻塞的,所以 I/O 操作在一般情况下往往不能直接返回,这会导致某一文件的 I/O 阻塞导致整个进程无法对其它客户提供服务,而 I/O 多路复用就是为了解决这个问题而出现的。

Blocking I/O

先来看一下传统的阻塞 I/O 模型到底是如何工作的:当使用 read 或者 write 对某一个**文件描述符(File Descriptor 以下简称 FD)**进行读写时,如果当前 FD 不可读或不可写,整个 Redis 服务就不会对其它的操作作出响应,导致整个服务不可用。

这也就是传统意义上的,也就是我们在编程中使用最多的阻塞模型:

阻塞模型虽然开发中非常常见也非常易于理解,但是由于它会影响其他 FD 对应的服务,所以在需要处理多个客户端任务的时候,往往都不会使用阻塞模型。

I/O 多路复用

虽然还有很多其它的 I/O 模型,但是在这里都不会具体介绍。

阻塞式的 I/O 模型并不能满足这里的需求,我们需要一种效率更高的 I/O 模型来支撑 Redis 的多个客户(redis-cli),这里涉及的就是 I/O 多路复用模型了:

在 I/O 多路复用模型中,最重要的函数调用就是 select,该方法的能够同时监控多个文件描述符的可读可写情况,当其中的某些文件描述符可读或者可写时, select 方法就会返回可读以及可写的文件描述符个数。

关于 select 的具体使用方法,在网络上资料很多,这里就不过多展开介绍了;

与此同时也有其它的 I/O 多路复用函数 epoll/kqueue/evport,它们相比 select 性能更优秀,同时也能支撑更多的服务。

Reactor 设计模式

Redis 服务采用 Reactor 的方式来实现文件事件处理器(每一个网络连接其实都对应一个文件描述符)

文件事件处理器使用 I/O 多路复用模块同时监听多个 FD,当 acceptreadwriteclose 文件事件产生时,文件事件处理器就会回调 FD 绑定的事件处理器。

虽然整个文件事件处理器是在单线程上运行的,但是通过 I/O 多路复用模块的引入,实现了同时对多个 FD 读写的监控,提高了网络通信模型的性能,同时也可以保证整个 Redis 服务实现的简单。

##I/O 多路复用模块

I/O 多路复用模块封装了底层的 selectepollavport 以及 kqueue 这些 I/O 多路复用函数,为上层提供了相同的接口。

在这里我们简单介绍 Redis 是如何包装 selectepoll 的,简要了解该模块的功能,整个 I/O 多路复用模块抹平了不同平台上 I/O 多路复用函数的差异性,提供了相同的接口:

static  int aeApiCreate(aeEventLoop *eventLoop)

static  int aeApiResize(aeEventLoop *eventLoop,  int setsize)

static  void aeApiFree(aeEventLoop *eventLoop)

static  int aeApiAddEvent(aeEventLoop *eventLoop,  int fd,  int mask)

static  void aeApiDelEvent(aeEventLoop *eventLoop,  int fd,  int mask)

static  int aeApiPoll(aeEventLoop *eventLoop,  struct timeval *tvp)

同时,因为各个函数所需要的参数不同,我们在每一个子模块内部通过一个 aeApiState 来存储需要的上下文信息:

// select

typedef  struct aeApiState {

fd_set rfds, wfds;

fd_set _rfds, _wfds;

} aeApiState;

// epoll

typedef  struct aeApiState {

int epfd;

struct epoll_event *events;

} aeApiState;

这些上下文信息会存储在 eventLoopvoid*state 中,不会暴露到上层,只在当前子模块中使用。

封装 select 函数

select 可以监控 FD 的可读、可写以及出现错误的情况。

在介绍 I/O 多路复用模块如何对 select 函数封装之前,先来看一下 select 函数使用的大致流程:

int fd =  /* file descriptor */

fd_set rfds;

FD_ZERO(&rfds);

FD_SET(fd,  &rfds)

for  (  ;  ;  )  {

select(fd+1,  &rfds, NULL, NULL, NULL);

if  (FD_ISSET(fd,  &rfds))  {

/* file descriptor `fd` becomes readable */

}

}
  1. 初始化一个可读的 fd_set 集合,保存需要监控可读性的 FD;
  2. 使用 FD_SETfd 加入 rfds
  3. 调用 select 方法监控 rfds 中的 FD 是否可读;
  4. select 返回时,检查 FD 的状态并完成对应的操作。

而在 Redis 的 ae_select 文件中代码的组织顺序也是差不多的,首先在 aeApiCreate 函数中初始化 rfdswfds

static  int aeApiCreate(aeEventLoop *eventLoop)  {

aeApiState *state = zmalloc(sizeof(aeApiState));

if  (!state)  return  -1;

FD_ZERO(&state->rfds);

FD_ZERO(&state->wfds);

eventLoop->apidata = state;

return  0;

}

aeApiAddEventaeApiDelEvent 会通过 FD_SETFD_CLR 修改 fd_set 中对应 FD 的标志位:

static  int aeApiAddEvent(aeEventLoop *eventLoop,  int fd,  int mask)  {

aeApiState *state = eventLoop->apidata;

if  (mask & AE_READABLE) FD_SET(fd,&state->rfds);

if  (mask & AE_WRITABLE) FD_SET(fd,&state->wfds);

return  0;

}

整个 ae_select 子模块中最重要的函数就是 aeApiPoll,它是实际调用 select 函数的部分,其作用就是在 I/O 多路复用函数返回时,将对应的 FD 加入 aeEventLoopfired 数组中,并返回事件的个数:

static  int aeApiPoll(aeEventLoop *eventLoop,  struct timeval *tvp)  {

aeApiState *state = eventLoop->apidata;

int retval, j, numevents =  0;

memcpy(&state->_rfds,&state->rfds,sizeof(fd_set));

memcpy(&state->_wfds,&state->wfds,sizeof(fd_set));

retval =  select(eventLoop->maxfd+1,

&state->_rfds,&state->_wfds,NULL,tvp);

if  (retval >  0)  {

for  (j =  0; j <= eventLoop->maxfd; j++)  {

int mask =  0;

aeFileEvent *fe =  &eventLoop->events[j];

if  (fe->mask == AE_NONE)  continue;

if  (fe->mask & AE_READABLE && FD_ISSET(j,&state->_rfds))

mask |= AE_READABLE;

if  (fe->mask & AE_WRITABLE && FD_ISSET(j,&state->_wfds))

mask |= AE_WRITABLE;

eventLoop->fired[numevents].fd = j;

eventLoop->fired[numevents].mask = mask;

numevents++;

}

}

return numevents;

}

封装 epoll 函数

Redis 对 epoll 的封装其实也是类似的,使用 epoll_create 创建 epoll 中使用的 epfd

static  int aeApiCreate(aeEventLoop *eventLoop)  {

aeApiState *state = zmalloc(sizeof(aeApiState));

if  (!state)  return  -1;

state->events = zmalloc(sizeof(struct epoll_event)*eventLoop->setsize);

if  (!state->events)  {

zfree(state);

return  -1;

}

state->epfd = epoll_create(1024);  /* 1024 is just a hint for the kernel */

if  (state->epfd ==  -1)  {

zfree(state->events);

zfree(state);

return  -1;

}

eventLoop->apidata = state;

return  0;

}

aeApiAddEvent 中使用 epoll_ctlepfd 中添加需要监控的 FD 以及监听的事件:

static  int aeApiAddEvent(aeEventLoop *eventLoop,  int fd,  int mask)  {

aeApiState *state = eventLoop->apidata;

struct epoll_event ee =  {0};  /* avoid valgrind warning */

/* If the fd was already monitored for some event, we need a MOD

* operation. Otherwise we need an ADD operation. */

int op = eventLoop->events[fd].mask == AE_NONE ?

EPOLL_CTL_ADD : EPOLL_CTL_MOD;

ee.events =  0;

mask |= eventLoop->events[fd].mask;  /* Merge old events */

if  (mask & AE_READABLE) ee.events |= EPOLLIN;

if  (mask & AE_WRITABLE) ee.events |= EPOLLOUT;

ee.data.fd = fd;

if  (epoll_ctl(state->epfd,op,fd,&ee)  ==  -1)  return  -1;

return  0;

}

由于 epoll 相比 select 机制略有不同,在 epoll_wait 函数返回时并不需要遍历所有的 FD 查看读写情况;在 epoll_wait 函数返回时会提供一个 epoll_event 数组:

typedef  union epoll_data {

void *ptr;

int fd;  /* 文件描述符 */

uint32_t u32;

uint64_t u64;

}  epoll_data_t;

struct epoll_event {

uint32_t events;  /* Epoll 事件 */

epoll_data_t data;

};

其中保存了发生的 epoll 事件( EPOLLINEPOLLOUTEPOLLERREPOLLHUP)以及发生该事件的 FD。

aeApiPoll 函数只需要将 epoll_event 数组中存储的信息加入 eventLoopfired 数组中,将信息传递给上层模块:

static  int aeApiPoll(aeEventLoop *eventLoop,  struct timeval *tvp)  {

aeApiState *state = eventLoop->apidata;

int retval, numevents =  0;

retval = epoll_wait(state->epfd,state->events,eventLoop->setsize,

tvp ?  (tvp->tv_sec*1000  + tvp->tv_usec/1000)  :  -1);

if  (retval >  0)  {

int j;

numevents = retval;

for  (j =  0; j < numevents; j++)  {

int mask =  0;

struct epoll_event *e = state->events+j;

if  (e->events & EPOLLIN) mask |= AE_READABLE;

if  (e->events & EPOLLOUT) mask |= AE_WRITABLE;

if  (e->events & EPOLLERR) mask |= AE_WRITABLE;

if  (e->events & EPOLLHUP) mask |= AE_WRITABLE;

eventLoop->fired[j].fd = e->data.fd;

eventLoop->fired[j].mask = mask;

}

}

return numevents;

}

子模块的选择

因为 Redis 需要在多个平台上运行,同时为了最大化执行的效率与性能,所以会根据编译平台的不同选择不同的 I/O 多路复用函数作为子模块,提供给上层统一的接口;在 Redis 中,我们通过宏定义的使用,合理的选择不同的子模块:

#ifdef HAVE_EVPORT

#include  "ae_evport.c"

#else

#ifdef HAVE_EPOLL

#include  "ae_epoll.c"

#else

#ifdef HAVE_KQUEUE

#include  "ae_kqueue.c"

#else

#include  "ae_select.c"

#endif

#endif

#endif

因为 select 函数是作为 POSIX 标准中的系统调用,在不同版本的操作系统上都会实现,所以将其作为保底方案:

Redis 会优先选择时间复杂度为 O(1) 的 I/O 多路复用函数作为底层实现,包括 Solaries 10 中的 evport、Linux 中的 epoll 和 macOS/FreeBSD 中的 kqueue,上述的这些函数都使用了内核内部的结构,并且能够服务几十万的文件描述符。

但是如果当前编译环境没有上述函数,就会选择 select 作为备选方案,由于其在使用时会扫描全部监听的描述符,所以其时间复杂度较差 O(n),并且只能同时服务 1024 个文件描述符,所以一般并不会以 select 作为第一方案使用。

总结

Redis 对于 I/O 多路复用模块的设计非常简洁,通过宏保证了 I/O 多路复用模块在不同平台上都有着优异的性能,将不同的 I/O 多路复用函数封装成相同的 API 提供给上层使用。

整个模块使 Redis 能以单进程运行的同时服务成千上万个文件描述符,避免了由于多进程应用的引入导致代码实现复杂度的提升,减少了出错的可能性。

写在后面:2020年面试必备的Java后端进阶面试题总结了一份复习指南在Github上,内容详细,图文并茂,有需要学习的朋友可以Star一下!
GitHub地址:https://github.com/abel-max/Java-Study-Note/tree/master
在这里插入图片描述


本文链接: http://www.dtmao.cc/news_show_150280.shtml

附件下载

相关教程

    暂无相关的数据...

共有条评论 网友评论

验证码: 看不清楚?