Android防重复点击 django 多进程 树莓派USB aircrack-ng TCP连接 sqlite ssh routes grep camera swiftui electron安装 jquery的点击事件 div字体加粗 cad正在执行命令 wps文件修复工具下载 pythonassert函数 python生成随机数 二分查找python python包 python路径设置 java中的tostring 怎么配置java环境 java方法重载 怎么安装linux系统 魔兽世界字体包 bcdautofix 谷歌地球打不开 字幕制作软件哪个好 bash命令 js数组移除指定元素 渐变事件 火萤壁纸下载 js给标签添加属性 txplatform 氤氲之息哪里爆率高 系统激活 ae怎么复制图层 nonetype
当前位置: 首页 > 学习教程  > 编程语言

分布式场景下的唯一订单号的生成方法

2020/8/31 15:24:17 文章标签:

利用雪花算法生成订单号

package com.test;

/**
 * Twitter_Snowflake<br>
 * SnowFlake的结构如下(每部分用-分开):<br>
 * 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000 <br>
 * 1位标识,由于long基本类型在Java中是带符号的,最高位是符号位,正数是0,负数是1,所以id一般是正数,最高位是0<br>
 * 41位时间截(毫秒级),注意,41位时间截不是存储当前时间的时间截,而是存储时间截的差值(当前时间截 - 开始时间截)
 * 得到的值),这里的的开始时间截,一般是我们的id生成器开始使用的时间,由我们程序来指定的(如下下面程序IdWorker类的startTime属性)。41位的时间截,可以使用69年,年T = (1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69<br>
 * 10位的数据机器位,可以部署在1024个节点,包括5位datacenterId和5位workerId<br>
 * 12位序列,毫秒内的计数,12位的计数顺序号支持每个节点每毫秒(同一机器,同一时间截)产生4096个ID序号<br>
 * 加起来刚好64位,为一个Long型。<br>
 * SnowFlake的优点是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由数据中心ID和机器ID作区分),并且效率较高,经测试,SnowFlake每秒能够产生26万ID左右。
 */
public class SnakGenerateOrderNo {

    // ==============================Fields===========================================
    /** 开始时间截 (2018-07-03) */

    private final long twepoch = 1530607760000L;

    /** 机器id所占的位数 */
    private final long workerIdBits = 5L;

    /** 数据标识id所占的位数 */
    private final long datacenterIdBits = 5L;

    /** 支持的最大机器id,结果是31 (这个移位算法可以很快的计算出几位二进制数所能表示的最大十进制数) */
    private final long maxWorkerId = -1L ^ (-1L << workerIdBits);

    /** 支持的最大数据标识id,结果是31 */
    private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);

    /** 序列在id中占的位数 */
    private final long sequenceBits = 12L;

    /** 机器ID向左移12位 */
    private final long workerIdShift = sequenceBits;

    /** 数据标识id向左移17位(12+5) */
    private final long datacenterIdShift = sequenceBits + workerIdBits;

    /** 时间截向左移22位(5+5+12) */
    private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;

    /** 生成序列的掩码,这里为4095 (0b111111111111=0xfff=4095) */
    private final long sequenceMask = -1L ^ (-1L << sequenceBits);

    /** 工作机器ID(0~31) */
    private long workerId;

    /** 数据中心ID(0~31) */
    private long datacenterId;

    /** 毫秒内序列(0~4095) */
    private long sequence = 0L;

    /** 上次生成ID的时间截 */
    private long lastTimestamp = -1L;

    //==============================Constructors=====================================
    /**
     * 构造函数
     * @param workerId 工作ID (0~31)
     * @param datacenterId 数据中心ID (0~31)
     */
    public SnakGenerateOrderNo(long workerId, long datacenterId) {
        if (workerId > maxWorkerId || workerId < 0) {
            throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
        }
        if (datacenterId > maxDatacenterId || datacenterId < 0) {
            throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
        }
        this.workerId = workerId;
        this.datacenterId = datacenterId;
    }

    // ==============================Methods==========================================
    /**
     * 获得下一个ID (该方法是线程安全的)
     * @return SnowflakeId
     */
    public synchronized long nextId() {
        long timestamp = timeGen();

        //如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常
        if (timestamp < lastTimestamp) {
            throw new RuntimeException(
                    String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
        }

        //如果是同一时间生成的,则进行毫秒内序列
        if (lastTimestamp == timestamp) {
            sequence = (sequence + 1) & sequenceMask;
            //毫秒内序列溢出
            if (sequence == 0) {
                //阻塞到下一个毫秒,获得新的时间戳
                timestamp = tilNextMillis(lastTimestamp);
            }
        }
        //时间戳改变,毫秒内序列重置
        else {
            sequence = 0L;
        }

        //上次生成ID的时间截
        lastTimestamp = timestamp;

        //移位并通过或运算拼到一起组成64位的ID
        return (((timestamp - twepoch) << timestampLeftShift) //
                | (datacenterId << datacenterIdShift) //
                | (workerId << workerIdShift) //
                | sequence);
    }

    /**
     * 阻塞到下一个毫秒,直到获得新的时间戳
     * @param lastTimestamp 上次生成ID的时间截
     * @return 当前时间戳
     */
    protected long tilNextMillis(long lastTimestamp) {
        long timestamp = timeGen();
        while (timestamp <= lastTimestamp) {
            timestamp = timeGen();
        }
        return timestamp;
    }

    /**
     * 返回以毫秒为单位的当前时间
     * @return 当前时间(毫秒)
     */
    protected long timeGen() {
        return System.currentTimeMillis();
    }

    
    public static void main(String[] args) {
        SnakGenerateOrderNo idWorker = new SnakGenerateOrderNo(0, 0);
        for (int i = 0; i < 1000; i++) {
            long id = idWorker.nextId();
            //System.out.println(Long.toBinaryString(id));
            System.out.println(id);
        }
    }
}

生成的位数是17位,若想增加位数的话,在加个时间就好了,比如yyyyMMdd+idWorker.nextId(),前面的年月日通过java生成的,就可以获取你想要的位数了,切记不能切割掉后几位了,否则重复。

如果是在单机上生成订单号,可以采用以下方式:

package com.test;

import javax.xml.transform.Source;
import java.time.LocalDateTime;
import java.time.ZoneId;
import java.time.format.DateTimeFormatter;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.stream.Collectors;
import java.util.stream.IntStream;

public class GenerateOrderNo2 {
    /** 订单号生成(NEW) **/
    private static final AtomicInteger SEQ = new AtomicInteger(1000);
    private static final DateTimeFormatter DF_FMT_PREFIX = DateTimeFormatter.ofPattern("yyMMddHHmmssSS");
    private static ZoneId ZONE_ID = ZoneId.of("Asia/Shanghai");
    public static String generateOrderNo(){
        LocalDateTime dataTime = LocalDateTime.now(ZONE_ID);
        if(SEQ.intValue()>9990){
            SEQ.getAndSet(1000);
        }
        return  dataTime.format(DF_FMT_PREFIX)+SEQ.getAndIncrement();
    }
    public static void main(String[] args) {

        List<String> orderNos = Collections.synchronizedList(new ArrayList<String>());
        IntStream.range(0,8000).parallel().forEach(i->{
            orderNos.add(generateOrderNo());
        });

        List<String> filterOrderNos = orderNos.stream().distinct().collect(Collectors.toList());

        System.out.println("生成订单数:"+orderNos.size());
        System.out.println("过滤重复后订单数:"+filterOrderNos.size());
        System.out.println("重复订单数:"+(orderNos.size()-filterOrderNos.size()));
        filterOrderNos.stream().forEach(order-> System.out.println(order));
    }

}

本文链接: http://www.dtmao.cc/news_show_150345.shtml

附件下载

相关教程

    暂无相关的数据...

共有条评论 网友评论

验证码: 看不清楚?