一帧数据 Java基本数据类型 Quartz 顺序查找 pyspark NEJ vue前端 后台界面 微信pc版无法获取二维码 windows杀死进程命令 查看nodejs版本 python正则表达式语法 python中set的用法 python打开文件夹 javadate java的string java编译 java环境部署 java日期类 java时间格式化 java8函数式编程 java查看变量类型 linux系统安装步骤 tabletpc 修改tomcat端口 kms神龙 assist是什么意思 ps色阶快捷键 深渊碎片 微信小程序源代码 方正兰亭粗黑字体下载 电脑待机费电吗 超过响应缓冲区限制 刷机精灵pc版 饥荒黄油 显卡怎么设置 js观察者模式 pr怎么旋转视频画面 python贪吃蛇 黑客软件网
当前位置: 首页 > 学习教程  > 编程语言

MySQL 死锁是怎么产生的?6 个案例分享!

2020/11/24 10:54:09 文章标签: 测试文章如有侵权请发送至邮箱809451989@qq.com投诉后文章立即删除

最近总结了一波死锁问题,和大家分享一下。 Mysql 锁类型和加锁分析 MySQL有三种锁的级别:页级、表级、行级。 表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最…

最近总结了一波死锁问题,和大家分享一下。

Mysql 锁类型和加锁分析

MySQL有三种锁的级别:页级、表级、行级。

  • 表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低。
  • 行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。
  • 页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度

算法:

  • next KeyLocks锁,同时锁住记录(数据),并且锁住记录前面的Gap
  • Gap锁,不锁记录,仅仅记录前面的Gap
  • Recordlock锁(锁数据,不锁Gap)
  • 所以其实 Next-KeyLocks=Gap锁+ Recordlock锁

死锁产生原因和示例

产生原因

所谓死锁<DeadLock>:是指两个或两个以上的进程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去.此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程。表级锁不会产生死锁.所以解决死锁主要还是针对于最常用的InnoDB。

死锁的关键在于:两个(或以上)的Session加锁的顺序不一致。

那么对应的解决死锁问题的关键就是:让不同的session加锁有次序

产生示例

案例一

需求:将投资的钱拆成几份随机分配给借款人。

起初业务程序思路是这样的:

投资人投资后,将金额随机分为几份,然后随机从借款人表里面选几个,然后通过一条条select for update 去更新借款人表里面的余额等。

例如两个用户同时投资,A用户金额随机分为2份,分给借款人1,2

B用户金额随机分为2份,分给借款人2,1

由于加锁的顺序不一样,死锁当然很快就出现了。

对于这个问题的改进很简单,直接把所有分配到的借款人直接一次锁住就行了。

Select * from xxx where id in (xx,xx,xx) for update

在in里面的列表值mysql是会自动从小到大排序,加锁也是一条条从小到大加的锁

例如(以下会话id为主键):

Session1:

mysql> select * from t3 where id in (8,9) for update;
+----+--------+------+---------------------+
| id | course | name | ctime               |
+----+--------+------+---------------------+
|  8 | WA     | f    | 2016-03-02 11:36:30 |
|  9 | JX     | f    | 2016-03-01 11:36:30 |
+----+--------+------+---------------------+
rows in set (0.04 sec)
Session2:
select * from t3 where id in (10,8,5) for update;
锁等待中……

其实这个时候id=10这条记录没有被锁住的,但id=5的记录已经被锁住了,锁的等待在id=8的这里
不信请看

Session3:
mysql> select * from t3 where id=5 for update;
锁等待中


Session4:
mysql> select * from t3 where id=10 for update;
+----+--------+------+---------------------+
| id | course | name | ctime               |
+----+--------+------+---------------------+
| 10 | JB     | g    | 2016-03-10 11:45:05 |
+----+--------+------+---------------------+
row in set (0.00 sec)
在其它session中id=5是加不了锁的,但是id=10是可以加上锁的。
案例二

在开发中,经常会做这类的判断需求:根据字段值查询(有索引),如果不存在,则插入;否则更新。

以id为主键为例,目前还没有id=22的行

Session1:
select * from t3 where id=22 for update;
Empty set (0.00 sec)

session2:
select * from t3 where id=23  for update;
Empty set (0.00 sec)

Session1:
insert into t3 values(22,'ac','a',now());
锁等待中……

Session2:
insert into t3 values(23,'bc','b',now());
ERROR 1213 (40001): Deadlock found when trying to get lock; try restarting transaction

当对存在的行进行锁的时候(主键),mysql就只有行锁。 当对未存在的行进行锁的时候(即使条件为主键),mysql是会锁住一段范围(有gap锁)

锁住的范围为:

(无穷小或小于表中锁住id的最大值,无穷大或大于表中锁住id的最小值)

如:如果表中目前有已有的id为(11 , 12)

那么就锁住(12,无穷大)

如果表中目前已有的id为(11 , 30)

那么就锁住(11,30)

对于这种死锁的解决办法是:

insert into t3(xx,xx) on duplicate key update xx='XX';

用mysql特有的语法来解决此问题。因为insert语句对于主键来说,插入的行不管有没有存在,都会只有行锁

案例三
mysql> select * from t3 where id=9 for update;
+----+--------+------+---------------------+
| id | course | name | ctime               |
+----+--------+------+---------------------+
|  9 | JX     | f    | 2016-03-01 11:36:30 |
+----+--------+------+---------------------+

row in set (0.00 sec)
Session2:
mysql> select * from t3 where id<20 for update;
锁等待中

Session1:
mysql> insert into t3 values(7,'ae','a',now());
ERROR 1213 (40001): Deadlock found when trying to get lock; try restarting transaction

这个跟案例一其它是差不多的情况,只是session1不按常理出牌了,

Session2在等待Session1的id=9的锁,session2又持了1到8的锁(注意9到19的范围并没有被session2锁住),最后,session1在插入新行时又得等待session2,故死锁发生了。

这种一般是在业务需求中基本不会出现,因为你锁住了id=9,却又想插入id=7的行,这就有点跳了,当然肯定也有解决的方法,那就是重理业务需求,避免这样的写法。

案例四

一般的情况,两个session分别通过一个sql持有一把锁,然后互相访问对方加锁的数据产生死锁。

案例五

两个单条的sql语句涉及到的加锁数据相同,但是加锁顺序不同,导致了死锁。

案例六

死锁场景如下:

CREATE TABLE dltask (
    id bigint unsigned NOT NULL AUTO_INCREMENT COMMENT ‘auto id’,
    a varchar(30) NOT NULL COMMENT ‘uniq.a’,
    b varchar(30) NOT NULL COMMENT ‘uniq.b’,
    c varchar(30) NOT NULL COMMENT ‘uniq.c’,
    x varchar(30) NOT NULL COMMENT ‘data’,   
    PRIMARY KEY (id),
    UNIQUE KEY uniq_a_b_c (a, b, c)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT=’deadlock test’;

a,b,c三列,组合成一个唯一索引,主键索引为id列。

事务隔离级别:

RR (Repeatable Read)

每个事务只有一条SQL:

delete from dltask where a=? and b=? and c=?;

SQL的执行计划

死锁日志

众所周知,InnoDB上删除一条记录,并不是真正意义上的物理删除,而是将记录标识为删除状态。(注:这些标识为删除状态的记录,后续会由后台的Purge操作进行回收,物理删除。但是,删除状态的记录会在索引中存放一段时间。) 在RR隔离级别下,唯一索引上满足查询条件,但是却是删除记录,如何加锁?InnoDB在此处的处理策略与前两种策略均不相同,或者说是前两种策略的组合:对于满足条件的删除记录,InnoDB会在记录上加next key lock X(对记录本身加X锁,同时锁住记录前的GAP,防止新的满足条件的记录插入。) Unique查询,三种情况,对应三种加锁策略,总结如下:

此处,我们看到了next key锁,是否很眼熟?对了,前面死锁中事务1,事务2处于等待状态的锁,均为next key锁。明白了这三个加锁策略,其实构造一定的并发场景,死锁的原因已经呼之欲出。但是,还有一个前提策略需要介绍,那就是InnoDB内部采用的死锁预防策略。

  • 找到满足条件的记录,并且记录有效,则对记录加X锁,No Gap锁(lock_mode X locks rec but not gap);
  • 找到满足条件的记录,但是记录无效(标识为删除的记录),则对记录加next key锁(同时锁住记录本身,以及记录之前的Gap:lock_mode X);
  • 未找到满足条件的记录,则对第一个不满足条件的记录加Gap锁,保证没有满足条件的记录插入(locks gap before rec);

死锁预防策略

InnoDB引擎内部(或者说是所有的数据库内部),有多种锁类型:事务锁(行锁、表锁),Mutex(保护内部的共享变量操作)、RWLock(又称之为Latch,保护内部的页面读取与修改)。

InnoDB每个页面为16K,读取一个页面时,需要对页面加S锁,更新一个页面时,需要对页面加上X锁。任何情况下,操作一个页面,都会对页面加锁,页面锁加上之后,页面内存储的索引记录才不会被并发修改。

因此,为了修改一条记录,InnoDB内部如何处理:
  • 根据给定的查询条件,找到对应的记录所在页面;
  • 对页面加上X锁(RWLock),然后在页面内寻找满足条件的记录;
  • 在持有页面锁的情况下,对满足条件的记录加事务锁(行锁:根据记录是否满足查询条件,记录是否已经被删除,分别对应于上面提到的3种加锁策略之一);

死锁预防策略:相对于事务锁,页面锁是一个短期持有的锁,而事务锁(行锁、表锁)是长期持有的锁。因此,为了防止页面锁与事务锁之间产生死锁。InnoDB做了死锁预防的策略:持有事务锁(行锁、表锁),可以等待获取页面锁;但反之,持有页面锁,不能等待持有事务锁。

根据死锁预防策略,在持有页面锁,加行锁的时候,如果行锁需要等待。则释放页面锁,然后等待行锁。此时,行锁获取没有任何锁保护,因此加上行锁之后,记录可能已经被并发修改。因此,此时要重新加回页面锁,重新判断记录的状态,重新在页面锁的保护下,对记录加锁。如果此时记录未被并发修改,那么第二次加锁能够很快完成,因为已经持有了相同模式的锁。但是,如果记录已经被并发修改,那么,就有可能导致本文前面提到的死锁问题。

以上的InnoDB死锁预防处理逻辑,对应的函数,是row0sel.c::row_search_for_mysql()。感兴趣的朋友,可以跟踪调试下这个函数的处理流程,很复杂,但是集中了InnoDB的精髓。

剖析死锁的成因

做了这么多铺垫,有了Delete操作的3种加锁逻辑、InnoDB的死锁预防策略等准备知识之后,再回过头来分析本文最初提到的死锁问题,就会手到拈来,事半而功倍。

首先,假设dltask中只有一条记录:(1, ‘a’, ‘b’, ‘c’, ‘data’)。三个并发事务,同时执行以下的这条SQL:

delete from dltask where a=’a’ and b=’b’ and c=’c’;

并且产生了以下的并发执行逻辑,就会产生死锁:

上面分析的这个并发流程,完整展现了死锁日志中的死锁产生的原因。其实,根据事务1步骤6,与事务0步骤3/4之间的顺序不同,死锁日志中还有可能产生另外一种情况,那就是事务1等待的锁模式为记录上的X锁 + No Gap锁(lock_mode X locks rec but not gap waiting)。这第二种情况,也是”润洁”同学给出的死锁用例中,使用MySQL 5.6.15版本测试出来的死锁产生的原因。

此类死锁,产生的几个前提:

  • Delete操作,针对的是唯一索引上的等值查询的删除;(范围下的删除,也会产生死锁,但是死锁的场景,跟本文分析的场景,有所不同)
  • 至少有3个(或以上)的并发删除操作;
  • 并发删除操作,有可能删除到同一条记录,并且保证删除的记录一定存在;
  • 事务的隔离级别设置为Repeatable Read,同时未设置innodb_locks_unsafe_for_binlog参数(此参数默认为FALSE);(Read Committed隔离级别,由于不会加Gap锁,不会有next key,因此也不会产生死锁)
  • 使用的是InnoDB存储引擎;(废话!MyISAM引擎根本就没有行锁)

参考

  • https://blog.csdn.net/mine_song/article/details/71106410
  • http://hedengcheng.com/?p=844
  • http://www.cnblogs.com/sessionbest/articles/8689082.html

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。本文链接:https://blog.csdn.net/tr1912/article/details/81668423

近期热文推荐:

1.Java 15 正式发布, 14 个新特性,刷新你的认知!!

2.终于靠开源项目弄到 IntelliJ IDEA 激活码了,真香!

3.我用 Java 8 写了一段逻辑,同事直呼看不懂,你试试看。。

4.吊打 Tomcat ,Undertow 性能很炸!!

5.《Java开发手册(嵩山版)》最新发布,速速下载!

觉得不错,别忘了随手点赞+转发哦!


本文链接: http://www.dtmao.cc/news_show_400382.shtml

附件下载

相关教程

    暂无相关的数据...

共有条评论 网友评论

验证码: 看不清楚?